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Cytotoxic lymphocytes encompass natural killer lymphocytes (cells) and cytotoxic T cells that include CD8+ T cells, natural killer
(NK) T cells, γ, δ (γδ)-T cells and human CD4 + CD28� T cells. These cells play critical roles in inflammatory diseases and in
controlling cancers and infections. Cytotoxic lymphocytes can be activated via a number of mechanisms that may involve
dendritic cells, macrophages, cytokines or surface proteins on stressed cells. Upon activation, they secrete pro-inflammatory
cytokines as well as anti-inflammatory cytokines, chemokines and cytotoxins to promote inflammation and the development of
atherosclerotic lesions including vulnerable lesions, which are strongly implicated in myocardial infarctions and strokes. Here, we
review the mechanisms that activate and regulate cytotoxic lymphocyte activity, including activating and inhibitory receptors,
cytokines, chemokine receptors-chemokine systems utilized to home to inflamed lesions and cytotoxins and cytokines through
which they affect other cells within lesions. We also examine their roles in human and mouse models of atherosclerosis and the
mechanisms by which they exert their pathogenic effects. Finally, we discuss strategies for therapeutically targeting these cells to
prevent the development of atherosclerotic lesions and vulnerable plaques and the challenge of developing highly targeted
therapies that only minimally affect the body’s immune system, avoiding the complications, such as increased susceptibility to
infections, which are currently associated with many immunotherapies for autoimmune diseases.
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Introduction
Atherosclerosis is a disease of large elastic and muscular
arteries that is responsible for most myocardial infarctions
(MIs) including angina, ischaemic strokes and peripheral
vascular disease. Collectively, MIs and strokes are the leading
cause of global death, responsible for 248 deaths per 100 000
persons in 2013, representing 85.4% of all cardiovascular
deaths and 28.2% of all mortalities (Barquera et al., 2015;
Mortality and Causes of Death C, 2015). Without significant
new interventions, these statistics are predicted to worsen
with the world-wide increase in type 2 diabetes mellitus
associated with obesity (Dutton and Lewis, 2015; Munnee
et al., 2016), as obesity and type 2 diabetes mellitus are
independent risk factors for MIs and strokes (Kalofoutis
et al., 2007; Kernan et al., 2013). Atherosclerosis is initiated
by the subendothelial accumulation of low-density
lipoproteins rich in cholesterol and apolipoprotein B at sites
of disturbed flow, mostly at vessel bends and branch points,
where diffuse intimal thickenings develop (Nakashima et al.,
2008). Apoptotic and necrotic cells are characteristic features
of human and mouse atherosclerotic lesions, which increase
with lesion progression (Otsuka et al., 2015). In vulnerable
atherosclerotic lesions, the necrotic core is composed of
necrotic cells, cell debris and lipid and frequently constitutes

more than 40% of a lesion; it is a significant contributor to
plaque instability. Necrotic cells are largely the consequence
of apoptotic cells undergoing secondary necrosis due at least
in part to impaired efferocytosis, with apoptosis initiated by
cytotoxins (Froelich et al., 2004) and cytokines such as TNF-
α, largely derived from cytotoxic cells (Tay et al., 2016) and
with secondary necrosis recently shown to be mediated by
caspase 3 (Rogers et al., 2017). Apoptosis of smooth muscle
cells within inflamed fibrous caps covering large necrotic
cores is also a significant contributor to lesion instability, as
their loss results in collagen reduction, leading to fibrous
cap thinning (Chen et al., 2016; Yahagi et al., 2016).

Recent evidence indicates that cytotoxic lymphocytes
play important roles in the pathology of atherosclerosis
utilizing cytotoxic mechanisms to promote vulnerable
plaque development and progression. Here, we highlight
the role of cytotoxic lymphocytes in atheroma development,
including the development of inflamed and unstable
atheromas, focusing on the major cytotoxic lymphocyte
populations, invariant NKT (iNKT) cells, natural killer (NK)
cells, γδ-T cells, CD8+ T cells and human CD4 + CD28� T
cells. We first review their basic immunological
characteristics including their activating and inhibitory
receptors and their production of cytotoxic factors and
cytokines, highlighting aspects of knowledge that has the

Table 1
Comparison of general characteristics of different cytotoxic lymphocytes

NK cellsa γδ-T cellsb iNKT cells CD8+ T cellsd
CD4+ CD28�T
cellse

Immune response Innate Innate/?adaptiveb Adaptive Adaptive Adaptive

Antigen Not required Not required Lipid Peptide Peptide

Tissue residence SLO, Spleen Mucosa, Epithelium SLO, Liver/spleen SLO SLO

Signature surface
markers

NK1.1, TCR� TCRγδ TCR Vα24-Jα18 (h)
TCR Vα14-Jα18 (m)
NK1.1

TCRαβ CD8 TCRαβ CD4

Activating or
inhibiting

NKG2D, NKp46,
NKp30, NKp44,
KIR (h), Ly49 (m),
DNAM, FcγRIII

NKG2D, NKp44,
DNAM, FcγRIII

NKG2D, NKp30,
NK046, KIR (h),
Ly49 (m), FcγRIII

TCR-dependent
antigens, NKG2D,
KIR (h), Ly49 (m),

TCR-dependent
antigens, NKG2D,
DNAM

Chemokine receptors CXCR1, CXCR3,
CXCR4, CCR7,
CCR9

CCR7, CCR10,
CXCR5

CCR4, CCR5, CCR6,
CXCR3, CXCR4

CCR4, CCR5,
CCR7, CCR9,
CDR10, CXCR3

CCR5, CCR7,
CXCR4, CX3CR1

Effector functions

*cytotoxins + + + + +

*Fas + + + + ?

*TRAIL + + + + ?

*cytokines + + + + +

Cell-to-cell interaction CD4 T cells NK cells, monocytes MZ B cells Monocytes,
dendritic cells,
macrophages

NA

a(Vivier et al., 2008),
b(Vantourout and Hayday, 2013),
c(Brennan et al., 2013),
d(Zhang and Bevan, 2011),
e(Marshall and Swain, 2011). See text for detail.
h, human; m, mouse; NA, not available.
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potential to advance our understanding of atheroma
development, progression and provide the theoretical basis
of future therapies. We then review the current knowledge
on their involvement in atherosclerosis and finally consider
pharmacological intervention strategies to prevent
atheromas and vulnerable plaque development.

Immunological characteristics of cytotoxic
lymphocytes
Major lymphocytes with cytotoxic effector function comprise
NK cells, γδ-T cells, NKT cells, CD8 T cells and human CD4
+CD28�T cells. Despite having similar haemopoietic origins,
NK and γδ-T cells do not require antigen presentation for their
activation and effector function; instead, they are activated
by innate receptors. Also, γδ-T cells and NKT cells are
considered to bridge the innate and adaptive immune
systems. Here, we highlight the basic aspects of the
immunology of cytotoxic lymphocytes (Table 1), much of
which has not been applied to atherosclerosis but is likely to
impact on our understanding as to how they exert their pro-
atherosclerotic effects, with potential for translation.

NK cells. NK cells largely function as part of the innate
immune system. These cytotoxic cells develop
independently of the thymus and reside in peripheral
lymphoid organs. NK cell activity is regulated by activating
and inhibitory receptors (Pegram et al., 2011). Human NK
cell inhibitory receptors are mainly killer cell
immunoglobulin-like receptors (KIR) recognizing major
histocompablity complex (MHC)-I molecules whereas in
mouse, Ly49 receptors perform similar functions. Activating
receptors include NKp46, NKp30 and NKp44 as well as
activating versions of KIR and Ly49 receptors (Pegram et al.,
2011). The activating receptor natural-killer group 2 member
D (NKG2D) binds a number of cellular cell surface ligands
induced by stress signals including MICA/B and Rae-1. Other
activating receptors include DNAX accessory molecule-1
(DNAM-1), FcγRIII (CD16) (Watzl, 2014) and NKp80 (Welte
et al., 2006). Engagement of a single activating receptor is
not sufficient to stimulate cytotoxicity or cytokine secretion;
instead, at least two different activating receptors need to be
simultaneously engaged to initiate responses, with most
effective responses initiated when receptors utilize different
signalling pathways (Marcus et al., 2014). Acquisition of
cytotoxicity also requires IL-15 (Fehniger et al., 2007; Lucas
et al., 2007). NK cells express multiple cytokine receptors
and are activated by inflammatory cytokines such as IL-2, IL-
12, IL-15 and IL-18. Cytokine ‘pre-activated’ NK cells can be
further activated by a single activating receptor, greatly
increasing cytokine secretion or cytotoxicity (Tang et al.,
2013). Activated NK cells produce multiple cytotoxins
including TRAIL (Ochi et al., 2004), FasL (Chua et al.,
2004), granzyme B and perforin. They also produce pro-
inflammatory cytokines IFN-γ, TNF-α, IL-2 and IL-8 (De
Sanctis et al., 1997) and secrete chemokines MIP-1α (CCL3),
MIP-1β (CCL4) and RANTES (CCL5) (Fauriat et al., 2010).
NK cells facilitate the differentiation of naïve CD4+ T cells
into IFN-γ secreting Th1 T cells, by providing an early source
of IFN-γ within lymph nodes, which is required for Th1
polarization (Martin-Fontecha et al., 2004). They also

promote cross-presentation of antigens to CD8+ T cells
(Deauvieau et al., 2015). Like iNKT cells, NK cells are highly
migratory, expressing a large number of chemokine receptors
including CXCR1, CXCR3, CXCR4, CCR7 and CCR9
enabling them to migrate to sites of tissue inflammation,
including atherosclerotic lesions (Berahovich et al., 2006;
Peng and Tian, 2014).

γδ-T cells. γδ-T cells are T cells that develop in the thymus
and express unique T-cell receptors composed of one γ-
chain and one δ-chain. They predominantly reside in
epithelial and mucosa layers of the skin, intestine, lung and
tongue where they serve as a first line of defence against
infections. Activation, largely but not exclusively by innate
mechanisms, initiates or propagates immune responses via
cytokine- or cytolytic-dependent mechanisms (Born et al.,
2006; Poggi and Zocchi, 2014). Mouse and human γδ-T cells
possess many common characteristics that include innate
receptor expression, antigen presentation capabilities,
cytotoxicity and cytokine production (Holderness et al.,
2013; Vantourout and Hayday, 2013). γδ-T cells are
composed of a number of subsets. In the mouse, they are
broadly subdivided into CD27+ and CD27� γδ-T cells and
then further subdivided on the basis of different Vγ chains
(Pang et al., 2012). They are highly effective at killing
stressed and tumour cells and produce large amounts of pro-
inflammatory cytokines (Silva-Santos et al., 2015). They are
activated via their γδ-T cell and NK cell receptors, but unlike
αβ-T cells, antigen recognition by their T cell receptors
(TCRs) does not require MHC molecules or CD1 (Chien and
Konigshofer, 2007). They express multiple NK cell receptors
including NKG2D, DNAM-1, NKp44 and FcγRIII (CD16) and
are activated by stressed and/or infected cells expressing
MHC I molecules such as Rae-1, nectin and/or NKp44L
(Groh et al., 1998; de Andrade et al., 2014). Activated γδ-T
cells kill via FasL, TRAIL and granzyme B/perforin
(Bonneville et al., 2010). They are also activated by
cytokines IL-1, IL18 and IL-23 and secrete large amounts of
IFN-γ, TNF-α and IL-17 as well as Th2 cytokines (Bonneville
et al., 2010). They express chemokine receptors CCR7,
CCR10 and CXCR5 and respond to multiple chemokines
(Kabelitz and Wesch, 2003). Activated γδ-T cells also
influence other immune cells, enhancing NK cell-mediated
cytotoxicity (Maniar et al., 2010). They stimulate monocytes
to differentiate into inflammatory dendritic cells (Eberl
et al., 2009) and promote dendritic cell maturation
(Leslie et al., 2002).

iNKT cells. iNKT cells are innate-adaptive hybrid cells
expressing NK receptors as well as highly restricted TCRs
that recognize lipid antigens presented by the
transmembrane MHC class I-like CD1d glycoprotein. iNKT
cells arise from the thymus, complete maturation in the
periphery and are mainly found in the liver and spleen.
Their TCRs recognize both bacterial and self-lipid antigen-
CD1d complexes presented by antigen-presenting cells such
as dendritic cells (Godfrey et al., 2010). Mouse iNKT cells
express the semi invariant TCRα Vα14Jα18 whilst human
iNKT cells express Vα24Jα18 (Lantz and Bendelac, 1994).
iNKT cells are classified into three subtypes depending on
expression of co-receptors CD4 or CD8 (Seino and
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Taniguchi, 2005). Despite an inability to definitively
identify/characterize self-lipid antigens that activate NKT
cells (Fox et al., 2009), there is strong evidence for such
antigens in atherosclerosis and other inflammatory
disorders (Li et al., 2016; Lombardi et al., 2010). iNKT cells
can also be activated by non-TCR signals. iNKT cells
constitutively express TIM-1 (T cell Ig-like mucin-like-1), a
receptor for phosphatidylserine on apoptotic cells, which
stimulates cell proliferation and cytokine secretion (Lee
et al., 2010). These cells express the cell stress ligand receptor
NKG2D, which directly activates or co-stimulates iNKT cells
together with TCRs (Kuylenstierna et al., 2011). Engagement
of the Fc γ receptor (FcγRIII/CD16) also leads to activation,
resulting in antibody-mediated inflammation (Kim et al.,
2006). iNKT cells express a number of activating or
inhibitory killer immunoglobulin-like (Ig) receptors
(Patterson et al., 2008), including Ly49 receptors (Sköld
et al., 2000) as well as natural cytotoxicity receptors NKp30
and NKp46 (Nguyen et al., 2008). Cytokines also activate
iNKT cells either alone or in conjunction with TCRs
(Kitamura et al., 1999). iNKT cells express receptors for IL-12
(Kitamura et al., 1999), IL-18 (Leite-De-Moraes et al., 1999),
IL-21 (Coquet et al., 2007), IL-23 (Rachitskaya et al., 2008)
and IL-25 (Terashima et al., 2008). iNKT cells are migratory
lymphocytes expressing multiple chemokine receptors (Ho
et al., 2008). Chemokine receptors expressed by these cells
include CCR5, CCR6, CXCR3 and CXCR4; CCR4 is
predominately expressed by CD4+ iNKT cells (Kim et al.,
2002; Thomas et al., 2003).

Activated NKT cells produce Th1 and Th2 cytokines
including IFN-γ, TNF-α, IL-2 as well as IL-17 and IL-4, IL-10
and IL-13. Factors that pre-determine cytokine secretion
include CD4 expression and tissue location (Coquet et al.,
2008). The pattern of cytokine expression is more dependent
on the nature of the CD1d+ antigen presenting cell than on
the lipid antigen (Bai et al., 2012). Activated iNKT cells are
potent killer cells expressing the cytotoxins perforin and
granzyme B (Nguyen et al., 2008), FasL (CD178) (Wingender
et al., 2010) and TRAIL (Huang et al., 2014). Their cytotoxic
actions are greatly enhanced by IL-4 (Kaneko et al., 2000)
and IL-15 (Liu et al., 2012).

Cytotoxic CD8+ T lymphocytes. CD8+ T cells are lymphocytes
that express the CD8 coreceptor and recognize antigen
peptide-MHC class I complexes presented by antigen-
presenting cells such as dendritic cells. CD8+ T cells develop
in the thymus and reside in secondary lymphoid organs.
They play key roles in many inflammatory diseases (Walter
and Santamaria, 2005; Kyaw et al., 2013; Carvalheiro et al.,
2015) as well as in cancers and infections including
cytomegalovirus (CMV) infection and Epstein–Barr virus
(EBV) infections, which can be associated with
atherosclerotic lesions (Khanna and Burrows, 2000; Brincks
et al., 2008; Ahmadzadeh et al., 2009; Klenerman and
Oxenius, 2016). They exist as a number of subsets that
include short-lived effectors (with high migratory ability
and high capacity to produce cytokines and cytotoxins),
effector memory cells (which accumulate in peripheral
organs and become effectors upon re-encounter with
antigens), central memory cells (which rapidly proliferate
and produce abundant cytokines but few cytotoxic

molecules upon antigen encounter), tissue resident memory
cells (that have very limited migratory capacity, hence
permanently reside in peripheral tissue, producing
cytokines and cytotoxic molecules upon antigen encounter)
(Bisikirska et al., 2005; Gupta and Gollapudi, 2007; Marzo
et al., 2007; Carvalheiro et al., 2013; Mackay et al., 2013)
and regulatory cells (Bisikirska et al., 2005; Akane et al.,
2016). Naïve circulating CD8+ T cells are activated by
antigen presenting cells such as CD8α+ dendritic cells
presenting peptide antigens on MHC class I molecules
through a process called cross-presentation (Joffre et al.,
2012). CMV and EBV antigens activate, reactivate and
differentiate CD8+ T cells in antigen-specific cytotoxic T
cell-mediated responses (Khanna and Burrows, 2000;
Klenerman and Oxenius, 2016). Activation can be enhanced
by cytokines such as IL-1β (Ben-Sasson et al., 2013), IL-2, IL-
12, IL-15 and IL-21 (Moroz et al., 2004; Henry et al., 2008).
Activation can also be initiated in a TCR-independent
manner (Freeman et al., 2012). Like other killer cells, CD8+
T cells express killer-like receptors including NKG2D
(Verneris et al., 2004), Ly49 receptors (McMahon and
Raulet, 2001) and activating and inhibitory KIRs
(Bjorkstrom et al., 2012) with inhibitory KIRs mostly
confined to effector CD8+ T cells (Arlettaz et al., 2004).
However, responses of CD8+ T cells following activation of
these receptors are only apparent after activation via TCRs
(Arlettaz et al., 2004; Marzo et al., 2007). Other cell surface
CD8+ T cell molecules important in regulating activity
include programmed cell death-1 (PD-1), cytotoxic T
lymphocyte antigen-4 (CTLA-4), T cell immunoglobulin
and mucin domain-3 (TIM-3) and lymphocyte activity gene-
3 (LAG-3) (Gros et al., 2014). Activated effector CD8+ cells
can be subdivided based on killer cell lectin-like receptor G1
(KLRG-1) expression with KLRG-1hi expression marking
short-lived effector cells and KLRGlo marking memory
precursor cells (Ye et al., 2012). They can express a variety of
selectins, chemokine receptors and integrins including
PSGL-1 and CD44, CCR4, CCR5, CCR7, CCR9, CCR10,
CXCR3, VLA-1 (integrin, α 1 subunit) and LFA-1
(integrin αLβ2) enabling them to traffic and localize in
different regions of the body (Nolz et al., 2011). Effector
CD8+ T cells secrete pro-inflammatory cytokines IFN-γ and
TNF-α, IL-17A, IL-17F, IL-21 and IL-22 (Yu et al., 2013) and
may also secrete IL-14, IL-5 and IL-10. Like the other killer
cells, they express perforin and granzyme (Janas et al.,
2005), FasL (Kilinc et al., 2009) and TRAIL (Brincks et al.,
2008). Highly activated cytotoxic CD8+ T cells also secrete
IL-10 to dampen inflammatory responses whilst still
exerting potent cytotoxic effects (Noble et al., 2006;
Trandem et al., 2011). In contrast to effector CD8+ T cells,
regulatory CD8+ T cells attenuate inflammation by directly
killing activated T cells (Akane et al., 2016).

CD4 + CD28� T cells. CD4 + CD28� T cells are highly
differentiated human effector memory CD4+ T cells that
have down-regulated the costimulatory molecule CD28 due
to loss of a CD28-specific initiator complex (Vallejo et al.,
1998; Vallejo et al., 2002). Their development and
maturation process are similar to CD8 T cells. They are most
abundant in elderly humans over 60 years of age (Vallejo
et al., 1998) but can also be found in younger adults with
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chronic inflammatory disorders. Their numbers are increased
in humans with rheumatoid arthritis (Bryl et al., 2001), type 2
diabetes (Shi et al., 2013; Warrington et al., 2001) and
following CMV infection (van Leeuwen et al., 2004). Unlike
other cytotoxic cells, these cells are not expressed in
rodents. Despite the loss of CD28, these cells are not anergic
and proliferate in response to stimulation. They are
autoreactive to ubiquitously distributed autoantigens and
exhibit a restricted TCR diversity (Schmidt et al., 1996).
Surprisingly, they are resistant to the suppressive actions of
CD4 + CD25 + Foxp3+ regulatory T cells (Thewissen et al.,
2007) and also are resistant to activation-induced apoptosis
(Vallejo et al., 2000) due to high expression of the anti-
apoptosis factor Bcl-2 (Schirmer et al., 1998).

CD4 + CD28� T cells express multiple chemokine
receptors including CCR5, CCR7, CXCR4 and CX3CR1
enabling them to home to lymphoid organs and sites of tissue
inflammation including atherosclerotic lesions (Zhang et al.,
2005; Maly and Schirmer, 2015). Cytokines such as IL-12
regulate their pattern of chemokine receptor expression
(Zhang et al., 2005). CD4 + CD28� T cells are pro-
inflammatory and cytotoxic, expressing IFN-γ and TNF-α
(Pieper et al., 2014) as well as perforin and granzyme B
(Namekawa et al., 1998; Betjes et al., 2008). They respond to
IL-15 by up-regulating granzyme B and perforin expression,
increasing their cytotoxicity (Alonso-Arias et al., 2011). In
many ways, these cells mimic the effects of other cytotoxic
lymphocytes, expressing cell surface markers CD11b and
CD57 found on NK cells (Chapman et al., 1996; Schmidt
et al., 1996). They also express NK cell-activating receptors,
which markedly increase their activity when T cell activation
is suboptimal; receptors expressed include DNAM-1 and
CRACC (Fasth et al., 2010), NKG2D (Groh et al., 2003) and
the KIR KIR2DS2 (Yen et al., 2001). Detailed studies of their
significance in inflammatory disorders including
atherosclerosis have been greatly hampered by the lack of
such cells in mice.

Together, these basic immunology studies on the
different cytotoxic lymphocytes indicate that they are highly
migratory and their accumulation in lesions during
development of atherosclerosis is most likely dependent on
chemokines. Their ability to influence vulnerable lesions is
largely but not exclusively dependent on their presence in
lesions, where they have the potential to influence
development of vulnerable atherosclerotic lesion by a
number of common mechanisms involving cytotoxins. In
lesions, cytotoxic lymphocytes are also very likely activated
or co-activated by a number common killer cell receptor-
dependent mechanisms. However, knowledge of the relative
importance of precise mechanisms in atherosclerosis is still
rather limited (see Cytotoxic Lymphocytes and Development
of Atherosclerosis), and further studies are warranted to more
precisely define the best therapeutic targets to effectively
prevent their deleterious actions.

Cytotoxic lymphocytes and development of
atherosclerosis
In the very early stages of the development of atherosclerosis,
circulating leukocytes including lymphocytes migrate into
intimal layers via vascular adhesion molecules up-regulated

as a result of endothelial dysfunction. Subsequent chemokine
up-regulation in atherosclerotic lesions may also contribute
to lymphocyte recruitment. With progression, tertiary
lymphocyte organs that develop in adventitial layers may
also contribute to lymphocyte recruitment and activation.
Antigens implicated in atherosclerosis are thought to be
multiple in origin, but current understanding on antigens
involved in atherosclerosis is limited, with the exception of
modified LDL and heat shock protein60. Necrotic materials
are thought to be important, yet their role in atherosclerosis
remains to be elucidated.

Human atherosclerotic lesions are histologically divided
into six categories; type I, presence of foam cells in the
intimal layer; type II, fatty streak formation; type III, pre-
atheroma; type IV, atheroma; type V, fibrous cap formation
with or without calcification; and type VI, rupture with
thrombus formation. Mechanistic insights as to how
cytotoxic lymphocytes influence development and
progression of established atherosclerotic lesions require
animal models. Several genetically modified mouse models
have been developed including ApoE�/� mice and LDLR�/�

mice, transgenic ApoE3-Leiden mice and HuBTg+/+ LDLR�/�

mice (Kapourchali et al., 2014). Among these genetically
modified mouse models, ApoE�/� and LDLR�/� atherogenic
mouse models are the most widely used as the lesions that
develop in both mouse models are morphologically similar
to human atherosclerotic lesions. Both stage IV and V lesions
will take 14–20 weeks of high-fat diet feeding to generate in
mouse models and stage. Stage VI lesions are only seen in
the innominate artery; however, mouse lesions, unlike
human lesions, appear to be more resistant to rupture.
Therefore recently, a model of plaque rupture has been
developed using these mice (Chen et al., 2013). LDLR�/�mice
have an advantage over ApoE�/� mice in that it is much
easier to generate mixed bone marrow chimeric mouse
models with specific gene deletions in immune cells.

Cytotoxic lymphocytes accumulate in both mouse and
human atherosclerotic lesions and many appear to be
involved in nearly all stages of atherosclerosis – development,
progression of established lesions and vulnerable plaque
development; their roles in plaque rupture are yet to be
elucidated. It is also important to investigate where and
how these immune cells are activated and their site of action
during development/progression of advanced atherosclerosis
as this information is not available currently. This knowledge
will provide important insights as to how best to therapeutic
target these cells. Too frequently preclinical studies have
focused only on early development of atherosclerosis whilst
clinical studies based on results of preclinical studies have
focused on progression of vulnerable lesions and plaque
rupture-MIs and/or strokes. Cytotoxic lymphocytes
including NK cells, iNKT cells and CD8+ T cells have the
potential to not only influence early development of
atherosclerotic lesions but also advanced atherosclerotic
lesions, particularly vulnerable lesions and plaque rupture,
frequently acting locally within lesions or within lymph
nodes and producing pro-inflammatory cytokines,
chemokines and/or cytotoxins.

NK cells. NK cells have been strongly associated with
atherosclerosis development atherosclerosis in humans and
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genetically modified mice. They are present in human and
mouse atherosclerotic lesions (Whitman et al., 2004;
Bobryshev and Lord, 2005b) and are recruited to developing
lesions by chemoattractants such as monocyte
chemoattractant protein-1 (MCP-1 also known as
CCL2) and fractalkine (CX3CL1) (Allavena et al., 1994;
Yoneda et al., 2000) to promote atherosclerosis
development (Aiello et al., 1999; Lesnik et al., 2003). In
humans with atherosclerosis, expression of the activating
cell receptor CD160, which triggers cytotoxicity and
cytokine secretion, is increased on circulating NK cells and
suggested to contribute to atherosclerosis (Le Bouteiller
et al., 2011; Zuo et al., 2015). Also, NK cells expressing the
activating receptor NKG2C are increased in seropositive
patients for human CMV and associate with high-risk
carotid atherosclerotic plaques (Martinez-Rodriguez et al.,
2013). Other studies indicate that patients with severe
atherosclerosis have greater numbers of circulating NK cells
(Clerc and Rouz, 1997); elderly patients with peripheral
artery disease also have greater numbers of circulating NK
cells but with reduced cytotoxic capability (Bruunsgaard
et al., 2001). Immediately after non-STEMI MI NK cell
numbers are low and then increase over the ensuing
12 months possibly contributing to MI-accelerated
atherosclerosis; their failure to increase in some patients is
associated with persistent low-grade inflammation
(Backteman et al., 2014). In other studies, circulating but
not lymph node CD56+ NK cells are reduced in patients
with acute coronary syndrome compared with patients with
stable angina (Backteman et al., 2012). Given that NK cells
are activated in periodontitis (Kramer et al., 2013; Wang
et al., 2016) and periodontitis has been associated with
cardiovascular disease (Tonetti, Van Dyke, and Working
group 1 of the joint EFPAAPw, 2013), it is surprising that the
role of NK cells in periodontitis-accelerated atherosclerosis
has not been investigated. Similarly, whether NK cells
contribute to CMV aggravated atherosclerosis has not been
investigated (Vliegen et al., 2004; Beziat et al., 2013).

In contrast to these association studies in humans,
mechanistic studies defining the precise role of NK cells in
atherosclerosis are more limited. Early studies in mice with a
beige mutation indicated that NK cells might be
atheroprotective (Schiller et al., 2002). However, these mice
have a complex phenotype with defects in cell function not
only restricted to NK cells but also affecting neutrophils and
other cells and, this could have affected the outcome (Getz,
2002). Subsequently, Ly49A transgenic mice were used. These
mice express the Ly49A inhibitory receptor under the control
of the granzyme A promoter, and whilst the authors
concluded that NK cells contribute to the development of
atherosclerosis, the possibility that Ly49A affected other
proatherogenic cells such as cytotoxic T lymphocytes cells
was not excluded (Whitman et al., 2004); Ly49A is known
not only to inhibit NK cells but also to prevent CD8+ T cell
activation (Oberg et al., 2000). More recent studies using
anti-Asialo-GM1 antibodies to deplete NK cells in
hyperlipidaemic ApoE�/� mice also indicate that NK cells
promote the development of atherosclerosis, studies
supported by gain of function experiments (Selathurai et al.,
2014). As anti-Asialo-GM1 antibodies might deplete other
immune cells, we carried out a gain of function experiment

where adoptive transfers involving transfer of wild type NK
cells and NK cells deficient in IFN-γ, granzyme B and perforin
into triple knockout mice (i.e. T, B and NK cell-deficient
ApoE�/� mice) indicated that cytotoxic effects of NK cells
are pro-atherogenic and promote necrotic core development.
However, given that lymphocyte deficient mice were used, a
pro-atherogenic role for NK cells involving secretion of IFN-
γ could not be excluded. In immune competent mice, NK
cell-derived IFN-γ promotes CD4+ Th1 priming (Martin-
Fontecha et al., 2004). Thus in immune competent mice, NK
cells might also promote atherosclerosis via a CD4+ T cell-
dependent mechanism. How NK cells are activated during
the development of atherosclerosis is unknown, but given
that macrophage foam cells express ligands for NKG2D
receptors (Ikeshita et al., 2014), activation within lesions via
NKG2D receptors is highly likely.

γδ-Tcells. To date, few studies have addressed the role of γδ-T
cells in atherosclerosis despite their identification in human
atherosclerotic lesions more than 20 years ago (Kleindienst
et al., 1993). In ApoE�/� mice, hyperlipidaemia increases
γδ-T cells, but aortic lipid accumulation is unaffected,
suggesting no role in early lipid lesion/fatty streak
development (Cheng et al., 2014). Others have shown that
γδ-T cells are the most abundant T cell within
atherosclerotic lesions despite being a very minor T cell
population and their deletion reduces atherosclerotic lesion
size (Vu et al., 2014). It has been suggested that γδ-T cell-
derived IL-17 contributes to atherosclerosis. Their role in
progression of established lesions and plaque rupture has
not been investigated.

iNKTcells. iNKT cells migrate to developing atherosclerotic
lesions and are present as a minor cell population in mouse
atherosclerotic lesions (To et al., 2009). In human
atherosclerotic lesions, iNKT cells are also a minor
population and originally identified as CD161+ T cells
(Bobryshev and Lord, 2005a). This however does not
distinguish iNKT cells from CD161+ Foxp3+ T cells or other
CD161+ T cell subtypes (Pesenacker et al., 2013; Gonzalez
et al., 2015), but more recent studies using anti-TCR Vα24
antibodies have definitively demonstrated their presence in
human lesions (Kyriakakis et al., 2010). Early studies using
loss and gain of function provide strong evidence that iNKT
cells are important for development of atherosclerosis. Loss
of function studies involving hyperlipidaemic NKT cell-
deficient CD1d�/� chimeric LDLR�/� mice as well as
CD1d�/�ApoE�/� mice demonstrated smaller lesion
development in the absence of iNKT cells (Nakai et al.,
2004; Tupin et al., 2004); mice deficient in invariant Vα14
NKT cells also exhibit reduced atherosclerosis (Rogers et al.,
2008). Increasing atherosclerosis by administering
pharmacological doses of α-GalCer to activate NKT cells to
provide evidence that iNKT cells promote atherosclerosis
(Tupin et al., 2004) is complicated by extensive bystander
activation of T, B, NK and γδ-T cells (Kitamura et al., 2000;
Tupin et al., 2004; Smyth et al., 2005; Paget et al., 2012);
these lymphocytes also exert iNKT cell-independent pro-
atherogenic effects (Perry and McNamara, 2012; Tse et al.,
2013; Selathurai et al., 2014; Vu et al., 2014). More recent
studies indicate that iNKT cells promote atherosclerosis
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largely independently of bystander T, B or NK cell activation
(Li et al., 2015). CD4+ iNKT cells have been identified as the
proatherogenic subtype in mice. This subtype expresses
lower concentrations of Ly49 inhibitory receptors-Ly49A,
Ly49C/I and Ly49G2 compared with other subtypes,
possibly explaining their greater pro-atherogenic activity
(To et al., 2009). In contrast, human CD4+ iNKT cells
exhibit a somewhat different pattern of killer receptors with
increased expression of activating receptors NKp30 and
NKp46. These cells are also highly cytotoxic, killing
CD4 + CD25hiCD27lo/� regulatory T cells to promote
inflammation (Nguyen et al., 2008). Although early studies
suggested that pro-inflammatory cytokines such as IFN-γ
promote iNKT cell mediated atherosclerosis (Tupin et al.,
2004), more recent studies indicate a major role for
cytotoxins (Li et al., 2015). CD4+ iNKT cells promote
atherosclerosis and the development of large necrotic cores
via mechanisms dependent on perforin and granzyme B
rather than cytokines (Li et al., 2015). The cytotoxic actions
of the iNKT cell increase lesion apoptotic cell numbers and
necrotic cores, which in turn augment inflammation and
atherosclerosis development via a sterile inflammatory
response (Li et al., 2016). iNKT cell activation during the
development of atherosclerosis is at least in part dependent
on lipid antigens activating TCRs, indicated by findings that
a CD1d-dependent lipid antagonist to iNKT cells attenuates
both the development and progression of established
atherosclerosis (Li et al., 2016). Although the lipid antigens
have not been identified, some appear to be carried by
lipoproteins in the circulation and may also reside within
atherosclerotic plaques (VanderLaan et al., 2007). iNKT cells
are also important in LPS-accelerated atherosclerosis (Ostos
et al., 2002), a model resembling infection-associated
atherosclerosis. Bacterial infections involving Chlamydia
pneumoniae, Porphyromonas gingivalis and Helicobacter pylori
have been associated with accelerated atherosclerosis in
humans (Ameriso et al., 2001; Campbell and Rosenfeld,
2014; Hussain et al., 2015). iNKT cells constitutively express
TLR4 on their cell surface, and direct engagement of TLR4
on iNKT cells promotes inflammatory disorders (Kim et al.,
2012). Recently iNKT-derived IFN-γ has been shown to
induce apoptosis of marginal zone B cells, suggesting a
regulatory iNKT subset. The authors implicate expansion of
marginal zone B cells in relation to loss of iNKT-derived IFN-
γ in increased atherosclerosis in long-term high-fat feeding
(Soh et al., 2016).

Cytotoxic CD8+ T lymphocytes. Multiple lines of evidence
indicate that CD8+ T cells contribute to atherosclerosis
and vulnerable plaque development. Correlative studies in
humans with coronary artery disease imply important
roles for cytokine and cytotoxin producing CD8+ T cells
in advanced coronary artery atherosclerosis (Bergstrom
et al., 2012; Kolbus et al., 2013; Longenecker et al., 2013;
Hwang et al., 2016). In advanced human lesions, CD8+ T
cells predominate over CD4+ T cells (Gewaltig et al., 2008;
Rossmann et al., 2008; Paul et al., 2016) and concentrate
around shoulder regions and fibrous caps (Paul et al.,
2016). They are also abundant in mouse atherosclerotic
lesions (Kyaw et al., 2013). Oxidized LDL and heat shock
protein peptides have been implicated in their activation

(Wu et al., 1996; Rossmann et al., 2008; Kolbus et al.,
2010). Activation does not appear to involve antigen
presentation by CD8α + dendritic cells (Legein et al.,
2015), but may involve other antigen presenting cells
such as γδ-T cells, which are present in lesions. Despite
such associations, early studies in mice led to conflicting
results on the significance of CD8+ T cells (Fyfe et al.,
1994; Elhage et al., 2004), with conclusions largely based
on poorly understood complex mouse models (Araujo
et al., 1995; Schaible et al., 2002). An atheroprotective role
was suggested by increased atherosclerosis in β2m-deficient
mice. But β2m-deficient mice disrupt CD8α/α, not CD8α/β
T cell development, and develop iron overload aggravating
atherosclerosis (Araujo et al., 1995). While genetic
knockouts of CD8 and tap1 showed no change in lesions
(Elhage et al., 2004), it is likely that CD4 T cell expansion
during development compensated for the CD8 T cell
deficiency. More recent independent studies using specific
CD8+ T cell depleting antibodies indicate pro-atherogenic
roles for CD8+ T cells (Kyaw et al., 2013; Cochain et al.,
2015). Activated CD8+ T cells promote atherosclerosis and
vulnerable plaque development by cytotoxic mechanisms
involving perforin and granzyme B as supported by
adoptive transfer studies with CD8 T cells deficient in
perforin and granzyme B that failed to promote
atherosclerosis development (Kyaw et al., 2013). These
adoptive transfer studies suggest that CD8+ T lymphocytes
promote the development of vulnerable atherosclerotic
plaques by perforin and granzyme B-mediated apoptosis of
macrophages, smooth muscle cells and endothelial cells
that in turn leads to secondary necrosis and necrotic core
formation. These studies also suggest that CD8 T cell-
mediated cell death initiates a sterile inflammatory
response (Chen and Nunez, 2010), as the transfer of CD8
T cells deficient in perforin and granzyme B led to a
reduction in inflammatory MCP-1, IL-1β, IFN-γ and
VCAM-1. A role for TNF-α produced by CD8 T cells is also
supported by adoptive transfer studies with CD8 T cells
deficient in TNF-α that failed to promote atherosclerosis
development (Kyaw et al., 2013). While adoptive transfer
of CD8 T cells deficient in IFN-γ suggest that CD8 T cell-
derived IFN-γ has no role in atherosclerosis (Kyaw et al.,
2013), other studies indicate a role for CD8+ T cell-derived
IFN-γ in atherosclerosis development, regulating
monopoiesis and circulating inflammatory Ly6Chi

monocytes (Cochain et al., 2015). A role for CD8+ T cells
has been suggested in C. pneumoniae-accelerated
atherosclerosis (Zafiratos et al., 2015). It is also possible
that CMV and EBV antigen-specific CD8+ T cells may
contribute to pathogen-enhanced atherosclerosis as such
viral DNAs have been detected in atherosclerotic lesions
(Ibrahim et al., 2005); limited data are available linking
CMV and EBV infections to atherosclerosis. Recently, PD-1
and TIM-3 have been implicated in regulating CD8+ T cell
function in atherosclerosis in humans, by affecting TNF-α
and IFN-γ production (Qiu et al., 2015). In contrast to
these pro-atherogenic effects of CD8+ T cells, CD8 T cell
cytotoxicity increased by ApoB-100 targeted immunisation
modulates the functions of dendritic cells, monocytes and
macrophages (Chyu et al., 2012; Honjo et al., 2015;
Cochain and Zernecke, 2016), suggesting a possible
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favourable effect in atherosclerosis, but their relative
relevance in vivo is uncertain.

Hypertension, hypercholesterolaemia and diabetes
mellitus are major risk factors for plaque development and
rupture (Bentzon et al., 2014). Hypertension elevates
activated CD8+ T cell numbers in human subjects (Youn
et al., 2013; Itani et al., 2016) and increases CD8+ T cell
accumulation in mouse aortas, increasing augmented
perivascular inflammation and augmented endothelial
dysfunction (Itani et al., 2016; Mikolajczyk et al., 2016).
Together with early CD8+ T cell activation in
hypercholesterolaemic mice (Kolbus et al., 2010) and CD8+
T cell-induced macrophage accumulation in metabolic
diseases (Nishimura et al., 2009), cytotoxic CD8+ T cells
may contribute, at least in part, to the mechanisms by which
these risk factors promote plaque development and rupture.

CD4 + CD28�T cells. Association studies suggest a role for
CD4 + CD28�T cells in human atherosclerosis (Liuzzo et al.,
1999, 2000; Nakajima et al., 2002). These cells express
multiple cytotoxins including granzymes A and B, perforin
and granulysin as well as pro-inflammatory cytokines IFN-γ
and TNF-α (Teo et al., 2013). They are highly resistant to
apoptosis (Kovalcsik et al., 2015) and appear to accumulate
in vulnerable coronary atherosclerotic plaques (Nakajima
et al., 2003). Activation appears to be triggered by heat
shock protein 60 antigens (Zal et al., 2008; Zal et al., 2004)
and by the co-stimulatory molecules Ox40 (CD134) and
41BB (CD137) present on CD4 + CD28�T cells in acute
coronary syndromes (Dumitriu et al., 2012). Cytotoxic CD4
+ T cell responses have been reported in latent and chronic
viral infections (Walton et al., 2013), but whether there is
any role for virus-specific CD4+ CD28�T cells in
atherosclerosis is not known. CD4+ CD28�T cells are also
activated by IL-12 (Zhang et al., 2006). Cytotoxic CD4 T
cells have been reported to be stimulated by plasmacytoid
dendritic cell-derived IFN-α to induce expression of TRAIL
and kill vascular smooth muscle cells in carotid atheromas
(Niessner et al., 2006). Despite these associations, their role
in atherosclerosis and vulnerable plaque development
remains to be defined.

Collectively cytotoxic cells can effectively target and kill
lesion cells by inducing apoptosis and necrosis via three
mechanisms, that is, (1) cytotoxins such as perforin- and
granzymeB-mediated, (2) Fas–FasL or TRAIL-mediated and
(3) cytokine-induced mechanisms (Figure 1). Macrophages,
major constituents of lesion cellular contents, are major
target cells killed by cytolytic mechanisms, suggesting an
important role for cytotoxic cells in generating the necrotic
core and vulnerable plaques. As vascular smooth muscle cells
and endothelial cells can also be targeted by cytotoxic cells,
cytotoxic cells are also important in destabilising plaque
and inducing plaque rupture leading to MIs or strokes. Thus,
targeting cytotoxic cells may be therapeutically beneficial in
preventing premature atherosclerosis-related deaths.

Pharmacologically targeting cytotoxic
lymphocytes in atherosclerosis
Specific cytotoxic lymphocyte depletion could theoretically
be considered as one therapeutic approach to limit their

pro-atherogenic actions during atheroma and vulnerable
plaque development. However, such an approach is difficult
to justify in essentially healthy immune competent subjects
as it would make individuals highly susceptible to life-
threatening viral and bacterial infections. Instead, more
specific approaches that target specific receptors on
individual cell types or even unique cell types may be more
appropriate to attenuate atherosclerosis and vulnerable
plaque development. Towards this aim, pharmacological
targeting could involve the use of either small molecules or
long-acting biologicals (e.g. antibodies), which are becoming
increasingly accepted in atherosclerosis therapy (Stein et al.,
2012). Targeting iNKT cell and CD8+ T cell activation may
be an effective therapeutic strategy (Figure 2A). Recently, a
CD1d lipid antagonist was shown to prevent iNKT cell
activation in atherosclerotic mice and to reduce lesion
inflammation and necrosis; the antagonist was also highly
effective in preventing not only lesion development but also
progression of established lesions (Li et al., 2016). Targeting
antigen presentation with biologicals such as anti-CD1d
antibodies may also be an effective therapeutic strategy to
prevent iNKT activation in atherosclerosis (Duthie et al.,
2005); an anti-human CD1d inhibitory antibody has recently
been developed (Nambiar et al., 2015). Such approaches to
limit activation of killer cells seem to impact on immune
defence against infectious agents, but killer cells are able to
respond against pathogens microbes via various innate
receptors without utilizing TCR- or CD1d-dependent
activation. Therefore, targeting against activation of iNKT
and CD8+ T cells will not be expected to compromise host

Figure 1
Cytotoxic lymphocytes promote lesion apoptosis and necrosis via
cytotoxin-, FasL/TRAIL- or cytokine-mediated mechanisms. Lesion
macrophages are major apoptotic or necrotic cells in lesions, and
increased lesion apoptosis and necrosis generated larger necrotic
cores, a predominant feature of vulnerable atherosclerotic plaques.
Cytotoxic lymphocytes also induce apoptosis and necrosis in
vascular endothelial or smooth muscle cells that may contribute to
rupture of vulnerable plaques.
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defence systems. β2-adrenoceptors have recently been
shown to be elevated on human CD8+ effector memory T
cells, and β2-adrenoceptor activation decreases IFN-γ and
TNF-α secretion as well as cytotoxic activity of human and

murine CD8+ T cells (Figure 2A). Also, long-acting β2-agonists
such as salmeterol are effective in vivo in suppressing
cytokine secretion by CD8+ T cells (Estrada et al., 2016).
Whether treatment with β2-agonists is effective in preventing
CD8 + T cell activation and its consequences in
atherosclerosis remains to be determined. Necrotic cells are
abundant in advanced lesions and very likely contribute to
the cytotoxic actions of CD8+ T cells with lesion dendritic
cells utilizing C-type lectin domain family 9 member A
(Clec9A) to cross-present necrotic cell remnant antigens to
CD8+ T cells. It is tempting to speculate that preventing
necrotic cell sensing by dendritic cells expressing Clec9A
may also be an effective strategy to prevent CD8+ T cell
activation in advanced lesions (Figure 2A); Clec9A favours
antigen cross presentation to cytotoxic CD8+ T cells (Zelenay
et al., 2012). Preventing migration of cytotoxic lymphocytes
to atherosclerotic lesions could also be an effective
therapeutic strategy to attenuate atherosclerosis (Figure 2B)
but will require definition of the chemotactic factors that
are responsible for migration of cytotoxic lymphocytes to
lesions. A large number of receptor antagonists to G-
protein-coupled chemokine receptors have been developed
including CCR2, CCR5, CXCR3, CXCR4, CCR1 and CCR3
but have not been assessed in atherosclerosis (Suzaki et al.,
2008; O’Boyle et al., 2012; Zweemer et al., 2013). The findings
that NKG2D ligands are up-regulated in human plasma and
in human and mouse atherosclerotic lesions together with
the findings of NKG2D deletion studies in mice indicate that
NKG2D receptors are a viable therapeutic target (Figure 2C)
(Xia et al., 2011). Anti-NKG2D inhibitory antibodies are
available (Kjellev et al., 2007; Steigerwald et al., 2009), but
their effects on development and progression of established
atherosclerosis and on vulnerable plaque development have
not been assessed. One potential limitation of targeting
NKG2D is that receptor expression may not be restricted
to a single cell type but rather expressed on multiple
cytotoxic lymphocytes in the periphery. Similarly, KIR
activating and inhibitory receptors could be targeted to
limit proatherogenic effects (Figure 2C). Such receptors
have been targeted to increase the cytotoxicity of
lymphocytes in cancer (Benson et al., 2011); antibodies
could be developed to activate inhibitory receptors or
inhibit activating receptors suppressing cytotoxic
lymphocyte activity and attenuating atherosclerosis and
vulnerable plaque development.

Given that cytotoxic lymphocytes accumulate within
atherosclerotic lesions, more specific targeting of cytotoxic
lymphocytes residing within lesions might also be
considered as such an approach would not affect cytotoxic
lymphocyte activity in other tissues or in the circulation.
There is now a strong body of evidence for tissue resident
memory CD8+ T cells and NK cells with unique gene
expression patterns and receptor profiles characteristic of a
particular tissue (Wakim et al., 2012; Sojka et al., 2014; Park
and Kupper, 2015; Melsen et al., 2016). Clearly, additional
studies will be required to determine whether such cytotoxic
lymphocytes with unique protein expression profiles are
present in atherosclerotic lesions and developing vulnerable
plaques. Such an approach offers unique pharmacological
opportunities to suppress atherosclerosis and vulnerable
plaque development without significantly affecting other

Figure 2
Molecules expressed by cytotoxic lymphocytes that may be targeted
to attenuate atherosclerosis and vulnerable plaque development. (A)
CD1d on antigen presenting cells, for example, dendritic cells to
prevent TCR activation of iNKT cells and Clec9A on dendritic cells
to prevent uptake of necrotic cell remnants and presentation on
MHC I to activate CD8+ T cells. Also, activation of β2-adrenoceptors
(β2-AdR) by β2-adrenoceptor agonists (β2-AdR-Ag) to inhibit
activated CD8+ T cells. (B) Inhibiting chemokine receptors expressed
by cytotoxic lymphocytes to prevent their migration to developing/
developed atherosclerotic lesions. (C) Targeting NK activating and
inhibitory receptors/co-receptors to inhibit/attenuate activation of
cytotoxic lymphocytes to attenuate atherosclerosis and vulnerable
plaque development with activating receptors inhibited and
inhibitory receptors activated.
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components of the immune system, minimizing the
possibility of any unwanted immune suppressive effects such
as increased susceptibility to infections.

Summary and conclusions
Vulnerable atherosclerotic plaques characterized by large
necrotic cores and increased lesion apoptosis are an
important concern in atherosclerosis management because
their rupture initiates thrombotic occlusion of vital arteries
causing heart attacks and strokes. Cytotoxic lymphocytes in
human and mouse atherosclerotic lesions are of interest
because of their ability to induce apoptosis that leads to
secondary necrosis. Further research is warranted to precisely
and definitively define the roles of each cytotoxic
lymphocyte in development, progression and rupture of
vulnerable atherosclerotic plaques. Clearly, global depletion
of a cytotoxic lymphocyte is not an option, suggesting
instead a targeted therapeutic strategy that specifically affects
their activation or trafficking pathways. While approaches to
target lipid-antigens such as CD1d antagonists will impact on
NKT cell effector functions, this will not completely abolish
effector functions of other cytotoxic cells against infections
that recognize pathogenic antigens presented by MHC
molecules. In conclusion, it is more beneficial and clinically
feasible to target cytotoxic lymphocytes through either their
activation/trafficking pathways or targeting resident
cytotoxic lymphocytes within lesions. More studies are
needed to better understand the roles of the different
cytotoxic lymphocytes in atherosclerosis, particularly in
vulnerable plaque formation and rupture so that new
therapeutic targets can be defined for controlling activated
cytotoxic lymphocytes and their effector functions.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are
hyperlinked to corresponding entries in http://www.
guidetopharmacology.org, the common portal for data from
the IUPHAR/BPS Guide to PHARMACOLOGY (Southan
et al., 2016), and are permanently archived in the Concise
Guide to PHARMACOLOGY 2015/16 (Alexander et al.,
2015a,b,c).
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